© 00 O T W N

—_
]

10
11

13
14
15

MPS115/MPS116 PRESENTATION LAB 11

On this sheet you will combine LaTeX and HTML with Python. First you
will use SciPy to integrate numerically, then learn how to export data from
Python by writing to files which can then be read by other software.

1. MORE INTEGRATION AND SCIPY

Recall from Introduction to Probability and Data Science that the proba-
bility density function (pdf) of the standard normal distribution N (0, 1) is

given by
1 — 72
d)(Z) T \/ﬂexp <2>)

so that for Z a normally distributed random variable P(a < Z < b) =
fab ¢(z) dz. The cumulative distribution function (cdf) is given by

B(z) = P(Z < 2) = / L e (‘2’52) dt.

oo V27

This integral has no simple expression so needs to be calculated numerically.
You saw previously how to calculate approximations to definite integrals.
However, in this case we want to define an integral from —oo so the previous
method wouldn’t work. We will use the integration functions from the SciPy
(short for Scientific Python) module. To integrate a function f from a to b
you use scipy.integrate.quad(f, a, b) as in the following.

import numpy as np
import scipy.integrate as integrate

def pdf(z):
"""Calculate the probability density function."""
return np.exp(-z**2 / 2) / np.sqgrt (2 * np.pi)

integral = integrate.quad(pdf, 0, 2)
print ("The integral of phi from 0 to 2 is:", integral)

The output is a pair of numbers in round brackets: (result, error). The
calculated result is within error of the actual integral. Note that this
expression is not a list as it is in round brackets rather than square brackets.
This expression is a type called a tuple; it is a bit like a list, but you can’t
change a tuple. The important point here is that you access the individual
entries in a tuple in the same way that you do with a list, so to obtain just
the approximation to the integral and not the error, you should change the
final line to the following.

print ("Prob (0 <= Z <= 2) =", integrall0],
"plus or minus", integralll])

This integration method will allow us to use oo and —oco as limits. We do
this with np.inf and -np.inf. For instance, add the following lines.

integral = integrate.quad(pdf, -np.inf, 0)
print ("Prob (Z <= 0) =", integral(0],
"plus or minus", integralll])

© 00 O Tk W N

RN DN NN DN DN = = = s = s e
SO W N O OO Ut Wi~ O

27

MPS115/6 Mathematical Investigation Skills Presentation Lab 11:2

We will ignore the error term in this sheet, as you can often do unless you
are interested in precise numerics. We can now get Python to plot the cdf
within a range and to tabulate its values. Download the following program
cdf .py from the module website (right-click, save-as). Run the program.

import numpy as np
import scipy.integrate as integrate
import matplotlib.pyplot as plt

def pdf(x):
"""Calculate the probability density function."""
return np.exp(-x*%2 / 2) / np.sqrt(2 x np.pi)

MAX = 3.5
z = np.linspace (-MAX, MAX, int (2xMAXx1l6 + 1))

cdf = np.zeros_like(z)
for i in range(len(z)):
cdf[i] = integrate.quad(pdf, -np.inf, z[i]) [0]

plt.plot(z, pdf(z))
plt.plot(z, cdf)

plt.axis ([-MAX, MAX, 0, 1.057])
plt.show ()

print ("\n{0:"°5} {1:"6}".format ("z", "cdf(z)"))
print ("-"%x13)
for i in range (0, len(z), 8):

print ("{0:5.2f} {1l:.4f}".format(z[i], cdf[i]))

Let’s have a look at some of the lines.

Line 11 defines the constant MAX. We will be calculating the cdf from -MAX
to MAX.

Line 13 defines the numpy array of points at which we will calculate the cdf.
There will be 16 points calculated between each pair of integers.

Line 15 initialized the array in which we will store the corresponding cdf
values. It makes an array with the same number of entries as z but
with all the entries zero.

Lines 16-17 calculates the cdf for the various values and stores it in the array.
Lines 19-22 plot the graph of the cdf and the pdf.
Lines 24-27 tabulate the values of the cdf. Note that the 8 on line 26 means that

we only tabulate every 8th value. This is just so as not to display a
massive table. Change the 8 to a 1 and see what happens.

Now in the rest of this lab we will look at ways of exporting the data we
have just created, so that it can be used in other software.

2. WRITING A FILE THAT PGFPLOTS CAN READ

A graph in a KTEX document looks a lot better if it is drawn by pgfplots
than if it is just an imported picture; for one thing, the fonts will actually

29
30
31
32

31

MPS115/6 Mathematical Investigation Skills Presentation Lab 11:3

match. We will get Python to export the function values to a file and then
get pgfplots to read in the values from the file to draw the graph.

Add the following line to the above program and run it.

with open ("cdf.data", mode='w’) as cdf_file:
for i in range (0, len(z)):
cdf_file.write("{0:.2f} {1:.4f}\n"
.format (z[i], cdf[i]))

The file cdf . data should have been created in your working directory. Open
the file in a text editor. You should see a table of z-values and the corre-
sponding cummulative density function values.

Let’s analyse what was done here. It is very similar to the table printing
at lines 26 and 27 of the program above. The main difference is that it is
part of a with program block and we use the file_object.write() method
rather than the print () function. To get python to write a file, the general
form is as follows.

‘with open(file name, mode='w’) as file_object:
‘ indented program block

‘ containing statements of the form

‘ file object.write(string)

The first line creates a Python file object which refers to the file with the
name file_name. The mode=’w’ part means that we will be ‘w’riting to
this file. When this command is issued, if the file already exists then its
contents are deleted. If you wanted to add some data to an already existing
file then you use mode=’a’, which stands for ‘append’.

The command file_object.write(string) will just output the string
string to the file with name file_name instead of printing it to the screen.

The file cdf_graph_demo.tex is available on the module webpage (right
click to save). Save it in the same directory that your file cdf.data is in,
and LaTeX it.

You should see the graphs of the pdf and the cdf. Much of the code in
cdf_graph_demo.tex is setting up the plot. The relevant lines here are
lines 27-31 We have an explicit formula for the pdf, so that is plotted by
pgfplots on lines 27-30. Line 31 is the following.

\addplot [mark=none, thick] file {cdf.data};

This plots the cdf from the data that is in the file cdf.data; the keyword
file tells pgfplots to look in the given file.

3. WRITING LATEX AND HTML wiTH PYTHON

The new piece of Python you will need here is the idea of raw triple quotes
to define a string. Note that on the first line of the following the ‘r’ stands
for ‘raw’ and that you need three quotation marks at the beginning and at
the end. Try the following.

string = r"""This string appears as typed.
Things
like \t and \n are not converted.

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

MPS115/6 Mathematical Investigation Skills Presentation Lab 11:4

It is like using \begin{verbatim} in LaTeX.

wmnn

print (string)

To get the middle pair of lines using the ordinary construction for a string
you would have to use something like the following.

|string_2 = "Things\nlike \\t and \\n are not converted."
‘print(string,Z)

So it is sometimes useful to use this construction if your string will have lots
of backslashes and newlines, like in a tex file, as you will see below.

Now add the following code to your Python program cdf .py.

HEADER = r"""\begin{center}
\begin{tabular}{rr}
\toprule
z & $\Phi(z)$ \\
\otoprule

mnn

FOOTER = r""" \bottomrule
\end{tabular}
\end{center}"""

with open("cdf_table.tex", mode="w") as tex_file:
tex_file.write (HEADER)
for i in range (0, len(z), 8):
tex file.write (" ${0:.2f}$ & ${1:.6f}S "
"\\\\ \n"
.format (z[i], cdf[i]))
tex_file.write (FOOTER)

Run the program. It should have created a file cdf_table.tex in your
working directory. Open it and examine it. This is a ready-built piece of
LaTeX that you can input into any LaTeX file.

Add the following lines to the end of the LaTeX file cdf _graph_demo.tex.

Here is the table.
\input{cdf_table.tex}

Now LaTeX the file cdf_graph_demo.tex and see the table appear.

Exercise 1. Copy your Python program from above and save it with a
different name, such as cdf_html.py. Now edit the program so that it saves
the graph as an SVG image file cdf _graph.svg and writes an HTML file
cdf .html which displays the table of data of cdf values and displays the SVG
graph. You can base it on the HT'ML file cdf _incomplete.html which you
can find on the module webpage (right click to save).

	Lab 11
	1. More integration and SciPy
	2. Writing a file that pgfplots can read
	3. Writing LaTeX and HTML with Python

